Prediction of Harvest Time of Apple Trees: An RNN-Based Approach

نویسندگان

چکیده

In the field of agricultural research, Machine Learning (ML) has been used to increase productivity and minimize its environmental impact, proving be an essential technique support decision making. Accurate harvest time prediction is a challenge for fruit production in sustainable manner, which could eventually reduce food waste. Linear models have estimate period duration; however, they present variability when chronological apple tree stages. This study proposes PredHarv model, machine learning model that uses Recurrent Neural Networks (RNN) predict start date harvest, given weather conditions related temperature expected period. Predictions are made from phenological phase beginning flowering, using multivariate approach, based on series phenology meteorological data. The computational contributes anticipating information about date, enabling grower better plan activities, avoiding costs, consequently improving productivity. We developed prototype performed experiments with real datasets institutions. evaluated metrics, results obtained evaluation scenarios demonstrate efficient, good generalizability, capable accuracy results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

RNN based MIMO channel prediction

A new hybrid PSO-EA-DEPSO algorithm based on particle swarm optimization (PSO), evolutionary algorithm (EA), and differential evolution (DE) is presented for training a recurrent neural network (RNN) for multiple-input multiple-output (MIMO) channel prediction. This algorithm is shown to outperform RNN predictors trained off-line by PSO, EA, and DEPSO as well as a linear predictor trained by th...

متن کامل

RNN-based Derivation Structure Prediction for SMT

In this paper, we propose a novel derivation structure prediction (DSP) model for SMT using recursive neural network (RNN). Within the model, two steps are involved: (1) phrase-pair vector representation, to learn vector representations for phrase pairs; (2) derivation structure prediction, to generate a bilingual RNN that aims to distinguish good derivation structures from bad ones. Final expe...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

prediction of ignition delay period in d.i diesel engines

a semi-empirical mathematical model for predicting physical part of ignition delay period in the combustion of direct - injection diesel engines with swirl is developed . this model based on a single droplet evaporation model . the governing equations , namely , equations of droplet motion , heat and mass transfer were solved simultaneously using a rung-kutta step by step unmerical method . the...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2022

ISSN: ['1999-4893']

DOI: https://doi.org/10.3390/a15030095